Deformation and fracture mechanisms in nanocellulose reinforced composites

نویسنده

  • Mindaugas Bulota
چکیده

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Mindaugas Bulota Name of the doctoral dissertation Deformation and fracture mechanisms in nanocellulose reinforced composites Publisher School of Chemical Technology Unit Department of Forest Products Technology Series Aalto University publication series DOCTORAL DISSERTATIONS 109/2012 Field of research Wood Material Technology Manuscript submitted 3 May 2012 Date of the defence 5 October 2012 Permission to publish granted (date) 19 June 2012 Language English Monograph Article dissertation (summary + original articles) Abstract Cellulose is the main constituent of plants. In the cell wall of plants, cellulose nanofibrils act as a reinforcing agent embedded in a matrix of hemicelluloses and lignin, forming a nanocomposite material. Manmade nanocellulose reinforced composites began to receive attention approximately two decades ago when isolation methods for nanocellulose were developed. However, studies on the deformation of these novel materials have been limited. The effect of the composites’ preparation method on the mechanical properties was investigated and compared with theoretical models. Deformation mechanisms in composites reinforced with low weight fractions of different types of nanocellulose were investigated along with the effects of acetylation. Then the stress-transfer and micromechanics of composites reinforced with higher weight fractions of nanocellulose were studied using Raman spectroscopy. Finally, the effect of nanocellulose on thermomechanical properties of the composites and their behaviour in moist environment were addressed. The results show that the preparation method has an influence on the final mechanical properties of composites. Degassing of the nanocellulose/polymer mixture showed a positive effect on the Young’s modulus and tensile strength at lower weight fractions of nanocellulose due to the lower viscosities of the mixtures. However, degassing had no effect on the density of the composites. Chemical modification significantly improved the dispersion of nanocellulose in non-polar media as Raman imaging revealed. In turn, the mechanical properties and deformation of the composites was different with respect to the degree of substitution. The toughening of poly(lactic) acid by the addition of low weight fractions of nanocellulose was attributed to extensive polymer crazing which was also dependent on the morphology and degree of substitution of the nanocellulose. Using Raman spectroscopy it was shown that the deformation micromechanics at high weight fractions of nanocellulose are network dominated. This leads to a stress transfer mechanisms similar to a composite within a composite, where composite strength is dependent on stress transfer within the dense network. The mechanical properties of the composites were improved as well as the glass transition temperature. The crystallization behaviour and, in turn, crystallinity of the composites was observed to be impeded at large weight fractions of nanocellulose. Furthermore, the composites had better mechanical properties in humid environments compared to the pure PLA matrix and the pure nanocellulose film. Thus embedding of hydrophilic fibrils in a hydrophobic matrix improves the performance of these materials in humid environments.Cellulose is the main constituent of plants. In the cell wall of plants, cellulose nanofibrils act as a reinforcing agent embedded in a matrix of hemicelluloses and lignin, forming a nanocomposite material. Manmade nanocellulose reinforced composites began to receive attention approximately two decades ago when isolation methods for nanocellulose were developed. However, studies on the deformation of these novel materials have been limited. The effect of the composites’ preparation method on the mechanical properties was investigated and compared with theoretical models. Deformation mechanisms in composites reinforced with low weight fractions of different types of nanocellulose were investigated along with the effects of acetylation. Then the stress-transfer and micromechanics of composites reinforced with higher weight fractions of nanocellulose were studied using Raman spectroscopy. Finally, the effect of nanocellulose on thermomechanical properties of the composites and their behaviour in moist environment were addressed. The results show that the preparation method has an influence on the final mechanical properties of composites. Degassing of the nanocellulose/polymer mixture showed a positive effect on the Young’s modulus and tensile strength at lower weight fractions of nanocellulose due to the lower viscosities of the mixtures. However, degassing had no effect on the density of the composites. Chemical modification significantly improved the dispersion of nanocellulose in non-polar media as Raman imaging revealed. In turn, the mechanical properties and deformation of the composites was different with respect to the degree of substitution. The toughening of poly(lactic) acid by the addition of low weight fractions of nanocellulose was attributed to extensive polymer crazing which was also dependent on the morphology and degree of substitution of the nanocellulose. Using Raman spectroscopy it was shown that the deformation micromechanics at high weight fractions of nanocellulose are network dominated. This leads to a stress transfer mechanisms similar to a composite within a composite, where composite strength is dependent on stress transfer within the dense network. The mechanical properties of the composites were improved as well as the glass transition temperature. The crystallization behaviour and, in turn, crystallinity of the composites was observed to be impeded at large weight fractions of nanocellulose. Furthermore, the composites had better mechanical properties in humid environments compared to the pure PLA matrix and the pure nanocellulose film. Thus embedding of hydrophilic fibrils in a hydrophobic matrix improves the performance of these materials in humid environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational mesomechanics of particle-reinforced composites

Numerical models of deformation, damage and fracture in particle-reinforced composite materials, based on the method of multiphase ®nite elements (MPFE) and element elimination technique (EET), are presented in this paper. The applicability of these techniques for di€erent materials and di€erent levels of simulation was studied. The simulation of damage and crack growth was conducted for severa...

متن کامل

Investigation of Mechanical Properties of Lithium-Based Geopolymer Composites Reinforced with Basalt Fibers

Recently, geopolymer binders have been considered because of low cost, simple processes for synthesis and many raw materials in nature. Geopolymer with brittle nature does not have high strength and cannot be used alone for structural materials. Therefore, to use in different structures, the composite which is reinforced with fibers such as carbon, glass, basalt, etchasbeen used. In this resear...

متن کامل

STRENGTH AND FRACTURE TOUGHNESS OF WHISKER REINFORCED DENTAL RESIN-BASED COMPOSITES

Enhancing the properties of dental resin composites is of interest to researchers. The objective of the present investigation was to improve the strength and fracture toughness of dental composites via addition of silicon carbide whiskers and substitution of commonly used filler materials with stabilized zirconia ceramic powder. It was also intended to study the effect of powder- to- whisker ra...

متن کامل

Investigation of Crack Resistance in Single Walled Carbon Nanotube Reinforced Polymer Composites Based on FEM

Carbon nanotube (CNT) is considered as a new generation of material possessing superior mechanical, thermal and electrical properties. The applications of CNT, especially in composite materials, i.e. carbon nanotube reinforced polymer have received great attention and interest in recent years. To characterize the influence of CNT on the stress intensity factor of nanocomposites, three fracture ...

متن کامل

Investigation of Mode I Delamination Resistance in Inter-ply and Intra-ply Hybrid Composites Reinforced with Basalt/Nylon Woven Fabrics

Due to their sensitivity to impact-induced delamination, woven fabric reinforced polymer composites have limited practical applications. Hybridization of polymer composites has been proposed as a solution to this problem. In this study, the effects of fiber reinforcement type, hybridization method, plies stacking sequence and loading rate on mode I delamination behavior of pure basalt, pure nyl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012